Lectures (Video)
- 1. How Do You Know?
- 2. Force Laws, Lewis Structures and Resonance
- 3. Double Minima, Earnshaw's Theorem and Plum-Puddings
- 4. Coping with Smallness and Scanning Probe Microscopy
- 5. X-Ray Diffraction
- 6. Seeing Bonds by Electron Difference Density
- 7. Quantum Mechanical Kinetic Energy
- 8. One-Dimensional Wave Functions
- 9. Chladni Figures and One-Electron Atoms
- 10. Reality and the Orbital Approximation
- 11. Orbital Correction and Plum-Pudding Molecules
- 12. Overlap and Atom-Pair Bonds
- 13. Overlap and Energy-Match
- 14. Checking Hybridization Theory with XH3
- 15. Chemical Reactivity: SOMO, HOMO, and LUMO
- 16. Recognizing Functional Groups
- 17. Reaction Analogies and Carbonyl Reactivity
- 18. Amide, Carboxylic Acid and Alkyl Lithium
- 19. Oxygen and the Chemical Revolution (Beginning to 1789)
- 20. Rise of the Atomic Theory (1790-1805)
- 21. Berzelius to Liebig and Wöhler (1805-1832)
- 22. Radical and Type Theories (1832-1850)
- 23. Valence Theory and Constitutional Structure (1858)
- 24. Determining Chemical Structure by Isomer Counting (1869)
- 25. Models in 3D Space (1869-1877); Optical Isomers
- 26. Van't Hoff's Tetrahedral Carbon and Chirality
- 27. Communicating Molecular Structure in Diagrams and Words
- 28. Stereochemical Nomenclature; Racemization and Resolution
- 29. Preparing Single Enantiomers and the Mechanism of Optical Rotation
- 30. Esomeprazole as an Example of Drug Testing and Usage
- 31. Preparing Single Enantiomers and Conformational Energy
- 32. Stereotopicity and Baeyer Strain Theory
- 33. Conformational Energy and Molecular Mechanics
- 34. Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes
- 35. Understanding Molecular Structure and Energy through Standard Bonds
- 36. Bond Energies, the Boltzmann Factor and Entropy
- 37. Potential Energy Surfaces, Transition State Theory
Introductory Organic Chemistry
Course Summary
This course is based on CHEM 125: Freshman Organic Chemistry, Fall 2008 made available by Yale University: Open Yale under the Creative Commons BY-NC-SA license.
This is the first semester in a two-semester introductory course focused on current theories of structure and mechanism in organic chemistry, their historical development, and their basis in experimental observation. The course is open to freshmen with excellent preparation in chemistry and physics, and it aims to develop both taste for original science and intellectual skills necessary for creative research.
Reading Material
Not available.Course Material
1. Quantum Mechanics for ChemistryOther Resources
1. Organic ChemistryJoseph M. Hornback, Organic Chemistry Edition 2, Publisher: Cengage Learning, 2005,ISBN 9780534389512
(Click the button below to see a preview of the book)
2. Organic chemistry
Thomas N. Sorrell, Organic chemistry, Edition 2, Publisher: University Science Books, 2006, ISBN 9781891389382
(Click the button below to see a preview of the book)
3. Lectures on organic chemistry
Cuross Bakhtiar, David T. Hardy, Lectures on organic chemistry, Publisher: Imperial College Press, 1997, ISBN 9781860940538
(Click the button below to see a preview of the book)