Lectures (Video)
- 1. How Do You Know?
- 2. Force Laws, Lewis Structures and Resonance
- 3. Double Minima, Earnshaw's Theorem and Plum-Puddings
- 4. Coping with Smallness and Scanning Probe Microscopy
- 5. X-Ray Diffraction
- 6. Seeing Bonds by Electron Difference Density
- 7. Quantum Mechanical Kinetic Energy
- 8. One-Dimensional Wave Functions
- 9. Chladni Figures and One-Electron Atoms
- 10. Reality and the Orbital Approximation
- 11. Orbital Correction and Plum-Pudding Molecules
- 12. Overlap and Atom-Pair Bonds
- 13. Overlap and Energy-Match
- 14. Checking Hybridization Theory with XH3
- 15. Chemical Reactivity: SOMO, HOMO, and LUMO
- 16. Recognizing Functional Groups
- 17. Reaction Analogies and Carbonyl Reactivity
- 18. Amide, Carboxylic Acid and Alkyl Lithium
- 19. Oxygen and the Chemical Revolution (Beginning to 1789)
- 20. Rise of the Atomic Theory (1790-1805)
- 21. Berzelius to Liebig and Wöhler (1805-1832)
- 22. Radical and Type Theories (1832-1850)
- 23. Valence Theory and Constitutional Structure (1858)
- 24. Determining Chemical Structure by Isomer Counting (1869)
- 25. Models in 3D Space (1869-1877); Optical Isomers
- 26. Van't Hoff's Tetrahedral Carbon and Chirality
- 27. Communicating Molecular Structure in Diagrams and Words
- 28. Stereochemical Nomenclature; Racemization and Resolution
- 29. Preparing Single Enantiomers and the Mechanism of Optical Rotation
- 30. Esomeprazole as an Example of Drug Testing and Usage
- 31. Preparing Single Enantiomers and Conformational Energy
- 32. Stereotopicity and Baeyer Strain Theory
- 33. Conformational Energy and Molecular Mechanics
- 34. Sharpless Oxidation Catalysts and the Conformation of Cycloalkanes
- 35. Understanding Molecular Structure and Energy through Standard Bonds
- 36. Bond Energies, the Boltzmann Factor and Entropy
- 37. Potential Energy Surfaces, Transition State Theory
Introductory Organic Chemistry - Lecture 29
Get the Flash Player to view video.
Lecture 29 - Preparing Single Enantiomers and the Mechanism of Optical Rotation
Within a lecture on biological resolution, the synthesis of single enantiomers, and the naming and 3D visualization of omeprazole, Professor Laurence Barron of the University of Glasgow delivers a guest lecture on the subject of how chiral molecules rotate polarized light. Mixing wave functions by coordinated application of light's perpendicular electric and magnetic fields shifts electrons along a helix that can be right- or left-handed, but so many mixings are involved, and their magnitudes are so subtle, that predicting net optical rotation in practical cases is rarely simple.
Prof. J. Michael McBride
CHEM 125: Freshman Organic Chemistry, Fall 2008 (Yale University: Open Yale) http://oyc.yale.edu Date accessed: 2009-11-11 License: Creative Commons BY-NC-SA |
Lecture Material
Click the play button to start the slideshow above (the slides will be displayed for 10 sec before advancing to the next slide). You can navigate the slides manually by using the back and forward buttons. Clicking the slide itself will advance to the next slide.
To download the above lecture material use this link. (Right-click and select Save Target As or Save Link As.)
Supplementary lecture material is listed below.